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ABSTRACT 

The production of elementary particles in the big bang is 

discussed. In particular, the possibility that some elementary particle 

("ino") is produced in the big bang and is present today in sufficient 

numbers to contribute to the overall mass density of the Universe in the 

form of dark matter is illustrated with several examples. The 

production of neutrinos, axions and baryons are covered in detail. 

I. INTRODUCTION 

The study of the structure of galaxies reveals the presence of a 

component of the total mass of the galaxy that is dark. Dark matter 

seems to be present not Only in galactic halos, but also in the disk in 

the local vicinity of the solar system. Dark matter is also present in 

larger systems, such as binary galaxies, small groups of galaxies, 

clusters of galaxies, and perhaps in the Universe as a whole. 
1.1 
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It is not clear if all the dark matter problems have the same 

solution. It may be that the dark matter in the disk is different than 

the dark matter in the halo, which in turn is different than the dark 

matter in clusters of galaxies, etc. It is also not clear whether 

baryons, either in the form of primordial black holes, jupiters, etc. 

could be some (or all) of the dark matter. Of particular cosmological 

interest is the possibility that some component of dark matter iS 

non-baryonic, in the form of some elementary particle, or ino, which iS 

a remnant of the big bang. 

In this paper I will discuss the production of elementary particles 

in the big bang."* Some proposed candidates for ino dark matter are 

given in Table I. Possible masses range from 10 -5eV for axions to 

1028eV for pyrgons or Kaluza-Klein monopoles. The relic abundances of 

the particles if they are to contribute a significant fraction of the 

mass of the Universe are also given in Table I. One striking fact from 

the table is that there is a range of about 10 33 in possible ino masses 

and abundances. Another striking fact is that particle physicists have 

been remarkably generous in providing candidate inos. 

In this paper I will review the production of inos in the early 

Universe. After reviewing some general results from the standard model 

of the big bang, I will discuss the production of several of the 

candidates in Table I. I will first review the production of baryons, 

since it is obvious that baryons have something to do with galaxies. I 

will then discuss neutrinos, since other than baryons, they are the only 

ino in Table I that we know exists. I will then discuss axiOnS. The 

neutrinos and axions are examples of "hot" and tqcold" dark matter 



respectively. 

TABLE I 

SOME IN0 CANDIDATES FOR DARK MATTER 

Candidate Mass 

Axion 10m5eV 

Neutrinos 1OeV 

Gravitino/Photino 1 03eV 

Baryons 1O'eV 

Sneutrino/Photino 1OlleV 

GUT Monopoles 1 Oz5eV 

Pyrgons/K.-K. Monopoles 1028eV 

Present 
Abundance 

10gcm -3 

lO*cm -3 

1 cme3 

10+cme3 

10~'cm -3 

1 0-22cm-3 

10-25cm-3 

II. THE BIG BANG MODEL 

Although structure is observed in the Universe on very large 

scales, the structure seems to be superimposed on a smooth homogeneous 

background. Galaxies are not distributed randomly in the Universe, but 

they are correlated. The correlation may be quantified in the form of a 

two-point correlation function for galaxies, S(r), which gives the 

excess probability of finding a galaxy a distance r from another. **l If 

F,(r) >> 1, galaxies are strongly correlated on a scale r and are not 

distributed smoothly. If Ic(r)I < 1, then galaxies can be well 

described as spread homogeneously throughout the Universe on the scale 

r. If E(r) << -1, galaxies are anti-correlated. The observations show 

that P,(r) decreases with increasing r and that lc(r)] 5 1 on a scale of 
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5h-’ Mpc,* i.e. on distance scales greater than 5h -’ Mpc the galaxy 

distribution is smooth to a good approximation. 2.1 If we assume that 

galaxies are a fair indication of mass, on scales greater than 5h -’ Mpc 

mass should be distributed in a homogeneous manner throughout the 

Universe. 

The photons in the 3K microwave background*‘* give us a sample of 

the Universe at large distances. Even if the photons are not truly 

primordial, the cosmic photosphere, or the surface of last scattering iS 

certainly at cosmological distances. The mean free path for the 

microwave photons, A, is related to the electron density, ne, and the 

scattering cross section 0 by 

A-’ =neO , (2.1) 

where the relevant cross section is the Tompson cross section, 0 = oT = 

8na2/3m * e = 6.65 x 10-25cm2. The electron density is roughly half the 

baryon density, nB. The baryon density is not well determined, but its 

value can be bracketed. It is convenient to express the baryon density 

in terms of a critical density, p, 

PC = (3H02V(8nG) = 1.88 x 10 -29h2gcm-3 (2.2) 

* 
The con_skant hlreflects the uncertainty in the Hubble constant H , Ho = 

1OOh kms Mpc . It is expected that h is in the range 1 2 h 5 192. 
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where H o is the Hubble constant and G is Newton’s constant. The baryon 

density, nB is 

nB = 1.12 x 10-50Bh2cm -3 , (2.3) 

where OB is the ratio of the baryon density to the critical density, 

RgEPPB/Pc f (2.4) 

The mean free path of the microwave photons is then 

1.3x1029 4.2.104 
A = 

OBh2 
cm = 

OBh2 
Mpc . (2.5) 

Now this estimate for h is a gross overestimate, since most electrons 

will be bound in neutral atoms. If we assume OBh2 5 O(l), then the mean 

free path of the microwave photons is huge, and the photons must have 

had an origin at a very great distance in order to scatter and relax to 

a thermal distribution. 

The microwave background is very nearly isotropic, i.e. the 

temperature is very nearly the same in all directions. On angular 

scales of about 4.5 arc minutes, a recent observation of Uson and 

Wilkinson2’3 gives AT/T < 2.4 x 10m5, where AT is a difference of the 

background temperature. On an angular scale of 1800 there is a detected 

AT/T of about 10e3, which could be the result of our galaxy having a 

peculiar velocity of 10e3c. The observed isotropy of the microwave 
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background suggests that out to cosmological distances the Universe is 

isotropic about us. If we believe that we do not live in a Special 

place in the Universe, then the Universe should be isotropic about every 

point in the Universe. A space that is isotropic about every point is 

homogenous, so the microwave back&round implies that the Universe is 

homogeneous on large scales. 

It should be stressed that a homogenous, isotropic Universe is not 

the only possibility.2'4 There are many anisotropic cosmologies that can 

be constructed. In this paper I will only consider homogenous isotropic 

cosmologies. There are several advantages for considering only such 

cosmologies. The foremost reason as discussed above is that our 

Universe seems to be homogenous and isotropic. Another reason is that 

the symmetries of a homogenous, isotropic space allow a reduction of 

parameters in the metric. The fewer parameters in the theory, the 

better chance to interpret data. If the data can be understood by the 

simple homogeneous, isotropic model, then we have accomplished something 

truly remarkable, we have constructed a simple model for the large scale 

structure of the Universe. If the data cannot be understood by a 

homogeneous, isotropic model. then either the Copernican principle or 

General Relativity is incorrect, which would be an even more remarkable 

discovery. 

If we assume the Universe is homogeneous and isotropic, it iS 

possible to choose coordinates (r,e,$,t) for which the metric takes the 

form 

ds2 = dt2 - R2(t) [dr*/(l-kr2) + r2de2 + r2sin28d@2] , (2.6) 
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where the cosmological scale factor R(t) is a function of time. In the 

metric k is a constant, and it is possible to scale r such that k = 

+l,O. The spatial curvature scalar, 3 R, is related to k and R by 

3R = k/R2(t) . (2.7) 

If k = 0 the three space is flat, if k = +l the three space has constant 

positive curvature, and if k = -1 the three space has constant negative 

curvature. The cosmological scale factor determines the proper distance 

between two fixed coordinates. The proper distance from the origin to 

coordinate r , is given by 

dPROP = R(t) I r1 dr ( l-kr2)-1’2 
0 

= R(t) 

sin -1 
rl k = +l 

rl 
k-0 

sinh -1 i-, k = -1 . 

(2.8) 

If r, < 1 (r, is dimensionless and scaled to R) the” dpROp = R(t)r, for 

any k. The proper distance between any two comoving points scales with 

R(t). 

The generic behavior of R(t) for k = +l, k = -1, or k = 0 is show” 

in Fig. 2.1. If k = +l the Universe is closed, if k = -1 the Universe 

is open, if k = 0, the Universe is at the borderline. 

Of course the metric is only half of the problem, the other half of 

the problem is the dreaded right hand side, T pv. Again, we can use the 



symmetry of the problem to greatly restrict the form of T 
w’ 

A 

particularly simple choice for TUV is the perfect form 

T 
w = (P + P)U U uv - PQ” (2.9) 

where p is the energy density, p is the pressure, and U is the fluid 
!J 

velocity four vector. In the fluid rest frame UP = 6;. The conservation 

of energy momentum TPv 
;v = 0 implies 

(d/dr)(pR3) = -3pR2. (2.10) 

We will consider two simple forms for the equation of state; “matter” 

with p = 0, and “radiation” with p = p/3. Equation (2.10) then gives 

pR a R 
-4 

; pM 0: R -3 (2.11) 

for the radiation and matter energy densities. For sufficiently small 

values of R the Universe is dominated by radiation. In discussing the 

production in inos in the big bang we will be in the radiation dominated 

era. 

The radiation energy density receives a contribution not only from 

photons, but from all species of particles with mass smaller than the 

temperature. Therefore the radiation energy density is given by 

PR = (x2/30)& T4 (2.12) 
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where g, counts all species of particles with masses less than T, 

weighted by their spin degeneracy factors and a factor that depends on 

whether the particle is a boson or fermion 

g*= E gg + (718) E gF ’ (2.13) 
bosons f ermions 

With the choice of Eq. (2.9) for TN” and Eq. (2.6) for g 
w’ 

the 

Einstein equations give 

(d/R)2 + k/R2 = (8nC/3)p 

(2.14) 

4n 3 
=- 

45mp; 
g*T4 

where the last equality holds for pR > pM, and m 
Pl 

is the Planck mass (G 

-2 
= mpl ). Since T - R-’ for small R we can ignore the curvature term 

(kRe2) and solve Eq. (2.14) for the time since infinite temperature as a 

function of temperature 

t = (45/16~~)"~ -1’2 g* mPl 
T-2 . (2.15) 

In discussing the decoupling of particles in the early Universe, 

reaction rates are compared to the expansion rate, H, given by 

H = (R/R) = (4r3/45)“* g;‘2 (T2/mpl) . (2.16) 
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The final ingredient in the standard model necessary to calculate 

ino production is conservation of entropy. The total entropy in a 

comoving volume is given by 

S= sR3 

where s is the entropy density given by 

3 = (p + p)/T 

= (2n2/45) g,T3 . 

(2.17) 

(2.18) 

Note that if g, changes as the temperature of the Universe falls below 

the mass of some particle, the temperature of the Universe will not 

scale exactly as R-l, Since g,(T)T3R3 is constant. 

III. PRODUCTION OF THE BARYON ASYMMETRY3" 

The overwhelming evidence is that if antimatter exists in the 

Universe in any appreciable amount, it must be separated from matter on 

a scale of clusters of galaxies, 101'1 - ,o15M 3.2 
0' 

Furthermore, this 

separation must be done in the early Universe when the temperature of 

the Universe was T > MN, where MN is the nucleon mass. If we would 

assume the Universe had zero net baryon number, nN = ni, when T <_ MN, 

the nucleons would annihilate with antinucleons. 

The time evolution of the nucleon number density is given by 
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d”N d”i 
-=- = 

dt dt 
-(ni - nlq 2 )oA]v] -3(I?R)nN . (3.1) 

I” Eq. (3.1) OA is the total nucleon-antinucleon annihilation cross 

section, and nEq is the equilibrium abundance for a temperature T. The 

first term, -<o~[v/, accounts for the depletion of nucleon-antinucleon 

pairs by annihilation. The second term, nzq ‘oAIvI, accounts for NN 

creation in inverse annihilation processes. The final term, -3(ri/R)nN, 

accounts for the dilution of the density due to the overall expansion of 

the Universe. Note that if oAlvl is “large”, the nucleon3 will track 

the equilibrium abundance, which becomes exponentially small for T < MN. 

If oAlvl is ‘~smallfq, the pair creation and annihilation terms will be 

unimportant and the nucleon abundance will change only due to the 

expansion of the Universe. Large and small oAlvl refer to the relative 

Size of the n2fJAIvI term compared to the expansion term. When noAlvl < 

(6/R), the reaction rates have “frozen out.” If the reaction rates have 

frozen out, then the ratios of the nucleon density to entropy remains 

constant since ’ nN = -3&Rh-+,, and A = -3(d/R)s, as can be seen from 

Eq. (2.17). Equation (3.1) can be used to calculate the development of 

the number density of any particle that can annihilate. The concept of 

freeze-out and conservation of number density relative to entropy iS 

also quite general and will be used throughout this paper., 

If Eq. (3.1) is solved for nucleona, the final baryon-to-entropy 

ratio is less than 10 -18 . The entropy density today is related to the 
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photon density by* 

4 
T 

s= 

45r,(3) 
12 + (2114) (Tv/Tyj3]ny 

(3.2) 

= 7ny 

= 2800 cm-3 . Uy = 2.7K) . 

The nucleon density today is nN = 1.13 x 10-5fiNh2cm-3, and nN/s is given 

% 
- = 4.0 

S 
x 10-9qNh2 . (3.3) 

Of course, the exact value of nN/s is uncertain due to the appearance of 

sh2, but it is certainly much greater than 10 -18 . Therefore if nN = ni, 

annihilations would have reduced nN far below its observed value unless 

N and i are separated before T = MN. 

Any attempt to separate N and i at early times must face the 

horizon problem. The distance over which causal processes can act iS 

called the particle horizon. In the standard big-bang model the horizon 

distance is given by 

* 
In Eq. (3.2) we have assumed 3 families of 2-component neutrinos with 

temperature TV 
TJT$. 

= 0.714T., (see the next section for a discussion of 

t The baryon density is defined as nB = nN-s. If ni = 0, then nB = nN. 
If nN = 3, then nB = 0. 
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dB = 2t 

= (45/4lA”*g;“* mplT-2 . (3.4) 

At temperature T = mN = 103MeV, the horizon distance is 

1.4 X 105g-“%m * 1 The entropy in the horizon volume is S = s(4/3)rrd; = 

(5/g*?r ) 3 1’2 (mpl/T) = 7 x 1057g;' at T=m N. Even if the nucleon to 

entropy ratio was equal to one, there would be only lMg of baryons in 

the horizon at T = MN, and non-causal processes would have to separate N 

and i? on supercluster scales. 

If, however, n = n 
B N - I$ 2 0 at T = lGeV, then the Universe had an 

excess of nucleon3 over antinucleons and even perfect annihilation will 

leave a baryon excess. This excess is quantified as the baryon number B 

“B B=- = 
nN-ni 

(3.5) 
3 S 

If we assume that today nG << nN, then B = 4 x 10-952Bh2 should be a 

conserved number as long as baryon number is conserved and the entropy 

is conserved. B of 10m9 is a rather curious number. At temperatures 

greater than MN, there were roughly equal number of photons, baryons, 

and antibaryons, but for every ten billion antibaryons, there were ten 

billion and one baryons. The single extra baryon survives annihilation 

to become the baryons we observe in the Universe today. 

One of the most remarkable advances in the field of particle 

physics and cosmology is the development of a model to account for the 

baryon asymmetry. The necessary ingredients for the generation of a 
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baryon asymmetry from an initially symmetric state were first pointed 

out by Sakharov in 1967.3*3 The three ingredients are 1) Baryon number 

violation, 2) C and CP violation, and 3) Non-equilibrium conditions. 

The first condition, baryon number violation, is obvious. If 

baryon number is an exactly conserved quantum number in all 

interactions, B = lo-" must simply reflect the initial conditions. The 

second condition, C and CP violation is necessary since baryons are odd 

under C and CP. The third condition, non-equilibrium conditions is 

somewhat more subtle. If the baryon number can change, the chemical 

potential is not constant, and the entropy will be maximized when the 

baryon chemical potential (hence baryon number) is zero. Therefore if 

true chemical equilibrium is obtained, the baryon number will vanish. 

Grand Unified Theories (GUTS), theories that unify the strong and 

electroweak interactions,3’4 have baryon number violation. Although CP 

violation is not fully understood at low energies, it is supposed that 

CP and C violation will occur in GUTS. Finally the expansion of the 

Universe may be responsible for non-equilibrium. GUTS and the expansion 

of the early Universe offer a possible mechanism for the generation of 

the baryon asymmetry from an initially symmetric state. I will 

illustrate the mechanism by a simple model introduced by Kolb and 

Wolfram.3.5 

Assume a model with a real massive bozon X, and a massless species 

b(b) with baryon number l/2 (-(l/2)). In the absence of a Bose 

condensate or degenerate fermions we can uze Maxwell-Boltzmann 

statistics. We will also assume that baryon-number conserving reactions 

will occur rapidly compared to the timescale for changing the baryon 
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number. We may then write 

fb = exp[-(E-p)/T] 

f; = exp[-(E+p)/TI 

fX = exp[-E/T] 

(3.6) 

where E2 = p2 + m2 and the number density of a paPtiCle ZpSCieS i3 n = 

jfd3p/(2,)3. 

We model CP violation by writing the amplitudes for X f* bb, X ++i;E 

as (note: CPT requires IM(i+j)12 = lM(j+i)12) 

lM(X-bb)12 = IM(;b+X)/2 = (1+032 

(3.7) 

IM(X+h12 = IM(bb+X)12 = (l-~)M32. 

CP is violated in X decay if E f 0. 

The X number density evolves according to 

“X = -rx(nx - nx eq) - 3(i/R)nX (3.8) 

where nEq 13 the equilibrium X abundance, and TX is the total X-decay 

width (rX = IMo12/1fh). The baryon number density, nB = nb - "5, evolves 

according to 

*B = crX(nX - nx eq) - nBnlqrX - nB2n(ov) (3.9) 
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where (0~) is the thermally averaged 2++2 scattering cross section 

without real intermediate X states. Note that the driving term in fiB = 

ErX(nX - nx eq) iS non-vanishing only if CP is violated (e#O), B is 

violated (TXfO). and non-equilibrium obtains (n, - nzq 4 0). 

The basic process for non-equilibrium is that the expansion of the 

Universe i3 too rapid for nX to track its equilibrium value. This will 

occur when T = m X if the X interaction rate, 0: ccmX, is less than the 

expansion rate, = T2m -1 2 -1 
Pl 

= mXmpl Y This will happen only if 

K = ampl/mX (3.10) 

is not too much larger than one. Analytic solutions give the final 

value of B = K -1 . If K is not too large mX must be comparable to m 
Pl' 

Detailed calculation of the baryon asymmetry in GUT models lead to 

a set of equations similar to Eqs. (3.8) and (3.91, albeit much more 

complicated.3'5'3.6 The detailed studies zhow that an adequate baryon 

asymmetry can be generated for reasonable parameters (couplings, masses, 

CP violation) in the theories. It now seems likely that some sort of 

GUT interactions are responsible for generating the baryon asymmetry, 

hence generating the neutrons and protons that survive the early 

Universe to form the galaxies we observe. 

IV. NEUTRINOS FROM THE BIG BANG 

Neutrinos are neutral leptons, i.e. particles that only 

participate in weak interactions. In the early Universe neutrinos would 

have been produced in weak processes such as e+e- + vi;i where the 
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subscript i indicates the neutrino family, e,~, or T (or possibly more). 

If E > me, the cross section for neutrino production is 

a(e+e- ++ V.“. 1-1) = G;E2 (4.1) 

where G 
F is Fermi’s constant. When E > me, the number density of 

electrons iS given by ne - T3, so the production rate of neutrinos is 

(EST) 

r = no = T3G2E2 = GgT* . 
P F (4.2) 

This rate is to be compared with the expansion rate of the Universe TE = 

T2/m 
Pl 

rP - = G2T3m 

rE 
F Pl 

= O(1) [T/1MeV13 . 

(4.3) 

When the temperature of the Universe is greater than about 1 MeV, fP/rE 

iz much greater than one and neutrinos interact; they are created and 

they are destroyed. The neutrinos would then be in equilibrium with the 

rest of the matter in the Universe. When the temperature of the 

Universe iz less than about 1 MeV, !YP/rE is much less than one and 

neutrinos “freeze out.” After freeze-out they no longer interact and 

equilibrate with the rest of the Universe. A more detailed calculation 
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can be done by solving Eq. (3.1) for neutrinos with oA[vl the total 

neutrino annihilation crosz section. 4.1 

If we azsume that m u << 1 MeV, the neutrinos will be relativistic 

at freeze out, and the number density of neutrinos (plus antineutrinos) 

at freeze out (T=T~) would be 

n v = (s(3)/n2) (3/4) T; = (3/4) ny (4.4) 

where we have assumed 2-component neutrinos and n y is the number density 

of photons at freeze out. 

The neutrinos decouple before e+e- annihilation. The e+e- 

annihilation increases the neutrino temperature by a factor of (11/4)“3 

because the entropy in e+e- pairs is converted into photons but not 

neutrinos (since neutrinos have decoupled). Therefore the number 

density of neutrinos today, nvo, is (per family) 

n “0 = (314) (4/11) nYo = 110cmm3 . (4.5) 

If the neutrino haz a mazz mvi, then the relic neutrinos would 

contribute a fraction of the closure density 

Rvi = 0.01 (mvi/eV)hm2 . (4.6) 

If h = l/2, mvi as low as 25eV could close the Universe. If we require 

fivi 5 1, then mvi ( 100h2eV. The limit mvi < 100eV is much better than 

the present experimental bounds on m vII (5 0.5MeV) and mvr (5 164MeV). 
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The bound on mu has assumed that there are two degrees of freedom 

for v in equilibrium at lMeV, that there is a single species with a 

large mass, that the neutrinos are stable, and that my < 1MeV. If there 

are more than two degrees of freedom for neutrinos and the other degrees 

of freedom interact with normal matter more weakly than usual, the bound 

on the mass has been studied by Olive and Turner. If the neutrino is 

unstable with a lifetime less than the age of the Universe, for a 

sufficiently short lifetime the masslezs decay products of the neutrino 

will give R < 1. Finally if the neutrino is very massive its number 

density at freeze out will be exponentially supreszed. In this caze a 

neutrino with mass greater than about 2GeV will give n 2 1, even if 

stable. 

From the particle physics point of view neutrinos are the most 

likely candidate ino to be important for galaxy formation. We know 

neutrinos exist ! The standard Weinberg-Salam model has mazslezs 

neutrinos, but there is no deep understanding (e.g. a symmetry 

principle) to explain why they should be massless. If neutrinos are 

stable (T > tu) and have a mass in the 25-100eV range they will play an 

important role in the dynamics of galaxy formation. 

V. AXIONS*” 

In the theory of strong interactions, QCD, it is possible to add to 

the usual Lagrangian 

Lo = -(l/4) G,: Gap” , (5.1) 
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where G a = a Aa - a Aa 
ilv PV v!J+BE 

abcApbAvc, a term of the form 

Le = (e/32~~~) tr G”: Cap" (5.2) 

where pu is the dual of G a 
w’ 

pu = G aEu”po 
PO . 

It is possible to 

express L e as a total divergence, but unlike QED (where a similar term 

can be discarded as a surface term) it can have physical effects due to 

inztantons. Since L e has the form - eE’*8’, it violates P and T, hence it 

is odd under CP. One physical effect of the L8 term would be a 

contribution to the neutron electric dipole moment. The fact that the 

neUt.rOn electric dipole moment is less than of order 10 -19 e cm requires 

(W32r2) < IO-~ . (5.3) 

There is an additional contribution to 8. The quarks receive a mazs when 

a Higgz field receives a vacuum expectation value <y. In general the 

coup1 ing of e to the quarks iz neither real nor diagonal. When a 

rotation is performed to have the mass matrix real and diagonal, e 

receives a contribution 

e = at-g det M - * (5.4) 

where tj is the quark mass matrix. Therefore the relevant parameter for 

CP violation is 

e = e + arg det y . (5.5) 
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The two terms in Eq. (5.5) have quite different origins, and it is 

necessary that they cancel to give e f: 10 
-8 . In order to understand this 

cancellation, Peccei and Quinn 5.2 introduced a global U(1) symmetry zuch 

that 0 = -arg det FJ when e = <e>. Thus e is determined dynamically, and 

at the minimum of the Higgs potential, GO. The U(l)pQ symmetry is 

broken by instanton effects. Weinberg5’3 and Wilczek5’4 pointed out 

that the spontaneous breaking of the U(ljpQ symmetry would lead to the 

appearance of a pseudo Nambu-Goldstone particle, called the axiOn. The 

axion is a pseudo Nambu-Goldstone particle since the U(l)pQ symmetry is 

not exact and is broken by inztanton effects. Therefore the axion iS 

not. exactly massless, but picks up a mazs 

m a = fxm,/v = 30keV (250GeV/v) (5.6) 

where the factor f m 71 II comes from instanton effects, and v is the 

magnitude of the vacuum expectation of the Higgz field, <e> = veie. In 

the original axion models $ was the Higgs responsible for the SU2 x U, 

weak breaking, but Kim5’* pointed out that it is not necessary to tie 0 

to the weak breaking. Throughout this section I will keep v arbitrary. 

Cosmological arguments will be able to bracket v to be in the range 

108 - 1012GeV. 

The axion couplings to fermions is 

Lffa = (mf/v) i TY5fa (5.7) 

where a is the axion field (a=Im e) and f is zome fermion with mazz mf. 
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The axion also couples to photons through the anomaly 

L 
YYa = (a/3)v-’ F p”a 

ilv 
(5.8) 

where the F’s are for the electromagnetic field. If ma < 2me, the axion 

will decay to two photons with a lifetime 

T(a + YY) = (Y/fJ5T 71 (5.9) 

where ~~ is the neutral pion lifetime. In order to hide the axion from 

detection, it is necessary to make v large. The properties of the 

invisible* axion are shown in Fig. (5.1). 

The possible values of v can be limited by consideration of stellar 

evolution, in particular energy loss in red giant stars. 5.6 If axions 

can be produced in the core, they would escape the star causing an 

energy loss, and the nuclear fuel would have to be burned at a greater 

rate to compensate. If the loss is great enough the evolution of the 

red giant star would be too rapid to account for the observed numbers. 

Note that the mass of the axion is proportional to v -1 . If Y is small 

enough, the axion would be too massive to be produced in the star. The 

axions are produced either through “Compton” emission, Y+e+a+e, or 

through “Primakoff” emission, y+e-ry+a. In the first case the cross 

section for axion production depends upon the axion-electron coupling, 

while in the second case the cross section for axion production depends 

* 
Note that as v * ml the axion decouples from the low energy theory. A 

model with a large Y will decouple a, thus make it “invisible.” 
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upon the axion-photon couplings. From Fig. (5 .l ) it is seen that both 

couplings are proportional to v-l, so if Y is large enough the axion 

production cross section will be small enough that axion emission is not 

a problem. If v is small enough the axion mass will be too large to be 

produced in red giants. Stellar evolution rules out 102cev <_ ” <_ 

1 08GeV. 

Axions may play an important role in galaxy formation, since for 

certain values of v, Da could be close to one, where “a is the fraction 

of closure density in axions today.5.7 When the temperature of the 

Universe was T > v, the finite temperature effects should have restored 

the symmetry,5’8 and <y=O. When the temperature drops below T=v, a 

phase transition occurs and I<$>/ = Y. However for temperatures v 2 T > 

‘QCD ’ where AQCD = lOOMeV, instanton effects are not important, 5.9 and 

the axion is a true Nambu-Goldstone particle. In this temperatUPe 

regime the phase of <e> is irrelevant. When the temperature drops to T 

< ‘QCD’ the degenerate minima in <$> become noticeable and the axion 

field will evolve to one of the minima. The equation describing its 

evolution is (assuming the minimum at c=O). 

. . 
a + 3~4 + (av/aa) + rai = 0 (5.10) 

where aV/aa = rng. We can ignore the r a term in (5.10) for the invisible 

axion. The axion mass in X/au is a function of temperature 5.9,5.7 

ma(T) = (A~/~)(A/T)~ Cln(T/A)l (5.11) 
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for temperatures T > O(A). 

The potential energy in the axion field due to the misalignment of 

a is 

V(a) = a2m2v2 a = a26V. (5.12) 

If we assume ma is a constant, then Eq. (5.10) tells us that 

a = croA cos(mat) , (5.13) 

where CL0 = “(tQCD 1 and A = (T/T~C~)~“. This would correspond to an 

energy density today of 

pa = a2i0-22g cmw3 , (5.14) 

or about 107pc if e. = 1. However, ma is not a constant and during the 

period that it changes the amplitude of the oscillation, A, is damped to 

keep the adiabatic invariant A2(t)m(t) constant. Even if CL = 1 at high 

temperatures Q is damped to LIZ = 10-7v1 27’6. Therefore, the true pa 

today is5.7 

pa = ,o-29, 716 -3 
,2 gem . (5.15) 

From Eq. (5.15) we see that if v,~ > O(l), Da would be greater than 1, 

and if v,~ = O(l), the Universe today would be dominated by a condensate 

of zero momentum axions. 
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VI. HOT AND COLD PARTICLES 

Neutrinos and axions are examples of hot and cold dark matter 

respectively. The particle is hot or cold depending upon the velocity 

of the particle when the Universe becomes matter dominated. 

Recall that the radiation energy density today is 

PRO = h2/30)g,T4 (T = 3K) (6.1) 

with g, today given by 

g * = 2 + 2*3*(7/8)-(l/1.401)4 (6.2) 

where the 2 is for photons, and the second term comes from three 

neutrinos with two degrees of freedom at a temperature T 
u = (1 .401 )-‘TY. 

Since pR - R -4 = (1+zj4, the energy density in radiation at redshift z 

is 

PR = PRO(l + =I4 (6.3) 

From Eq. (6.1) and Eq. (6.2) 

. 
‘RO = 3.9 x 10-5h-2 (6.4) 

. is the present fraction of the critical density in the form of 

radiation. If we assume there is some massive ino with s = RMO today, 

then 
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PM = (l+z)3nMopc 

and 

PM 2.6x104h2R MO -= 

pR 1+z 

(6.5) 

(6.6) 

The crucial observation is that in deriving Eq. (6.6) we have not 

specified the identity of the dark matter, only that it gives a total 

RMO today (we expect so = 0.9 if the total n = 1). 

The importance of the ino velocity has to do with the damping of 

perturbations by free-streaming. Perturbations in the inos will suffer 

collisionless phase mixing on scales up to6:l 

a. DAMP 
= H-'V (6.7) 

where H-' is the horizon and v is the particle velocity. Note that H-1 

= t U' and that the damping scale increases until the particle becomes 

non-relativistic. The Universe becomes matter dominated at a 

temperature O(lOeV), and if a particle has mass m <- O(3T) = 30eV (for 

example neutrinos), structure up to H-l(T-1OeV) will be wiped out. This 

corresponds to a mass of about 3 x 1015Mo. 6.1 If a particle is cold, Y 

6.2 << 1, the damping scale will be much smaller. The coldest particle iS 

the axion, since it is a condensate of zero momentum particles. 

The numerical simulations of the clustering 63 : of relic inos depend 

upon the cosmological parameters (such as R, Ho, and the spectrum and 
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